Semantics of Higher-Order Recursion Schemes

نویسندگان

  • Jirí Adámek
  • Stefan Milius
  • Jiri Velebil
چکیده

Higher-order recursion schemes are recursive equations defining new operations from given ones called “terminals”. Every such recursion scheme is proved to have a least interpreted semantics in every Scott’s model of λ-calculus in which the terminals are interpreted as continuous operations. For the uninterpreted semantics based on infinite λ-terms we follow the idea of Fiore, Plotkin and Turi and work in the category of sets in context, which are presheaves on the category of finite sets. Fiore et al showed how to capture the type of variable binding in λ-calculus by an endofunctor Hλ and they explained simultaneous substitution of λ-terms by proving that the presheaf of λ-terms is an initial Hλ-monoid. Here we work with the presheaf of rational infinite λ-terms and prove that this is an initial iterative Hλ-monoid. We conclude that every guarded higher-order recursion scheme has a unique uninterpreted solution in this monoid.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Game semantics of higher-order recursion schemes establishes the decidability ofMSO model-checking

This article presents two different ways of model-checking higher-order recursion schemes, both relying on game semantics. A given recursion scheme is translated to another, which is its computational extent, in the sense that β-reduction paths called traversals in the new generated tree are isomorphic to branches of the former tree. Then, the two approaches differ on their way of simulating tr...

متن کامل

On Global Model Checking Trees Generated by Higher-Order Recursion Schemes

Higher-order recursion schemes are systems of rewrite rules on typed non-terminal symbols, which can be used to define infinite trees. The Global Modal Mu-Calculus Model Checking Problem takes as input such a recursion scheme together with a modal μ-calculus sentence and asks for a finite representation of the set of nodes in the tree generated by the scheme at which the sentence holds. Using a...

متن کامل

Relational Semantics of Linear Logic and Higher-order Model Checking

In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of a higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreov...

متن کامل

Recursion Schemes, Collapsible Pushdown Automata and Higher-Order Model Checking

This paper is about two models of computation that underpin recent developments in the algorithmic verification of higher-order computation. Recursion schemes are in essence the simply-typed lambda calculus with recursion, generated from first-order symbols. Collapsible pushdown automata are a generalisation of pushdown automata to higher-order stacks — which are iterations of stack of stacks —...

متن کامل

Semantics of linear logic and higher-order model-checking. (Sémantique de la logique linéaire et "model-checking" d'ordre supérieur)

This thesis studies problems of higher-order model-checking from a semantic and logical perspective. Higher-order model-checking is concerned with the verification of properties expressed in monadic second-order logic, specified over infinite trees generated by a class of rewriting systems called higher-order recursion schemes. These systems are equivalent to simply-typed λ-terms with recursion...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Logical Methods in Computer Science

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2009